LAr Field Calibration System (LArFCS) Overview

Yichen 07/22/16

Outline

- System Diagram
- Work Structure
- Subsystems

System Diagram

Work Breakdown Structure

Work Structure

- 1. The entire project can be divided into 3 tasks
- 2. Each individual task have clear border and can be proceeded in parallel

Task Forces

- TF 1: Yichen & Craig Cryogenic Construction, TPC Design, Laser
- TF 2: Jyoti
 Front-End Electronics
- TF 3: Wei
 DAQ construction

-UCI has agreed to collaborate with us. Additional graduate students are expected

Cryogenic System

- 1. The cryogenic system is going to be operated by the similar principle of the 20-L system
- 2. We have a 800-L dewar with 1-ton LAr capacity
- 3. The height of the dewar is 6 ft (72"), LAr with this height is corresponding a pressure of 3.65 Psi. Assuming at least we can get the similar relief pressure of 8 Psi. It is applicable to transfer LAr by pressure
- 4. The goal of the cryogenic system is to achieve long electron lifetime >1 ms (<1ppb impurities)
- 5. See Craig's talk

TPC Construction

- 1. A TPC is demanded for the measurement
- 2. The expected drift distance is 10 cm
- 3. Using rectangle field ring shape. The overall dimensions are 29.1 cm x 17.2 cm x 11 cm
- 4. Wire configuration: U: 48 x V: 48 x Y: 96
- 5. The goal of the TPC is to generate/collect electron signal, and maintain uniform drift field
- 6. I will discuss the details in my talk

96 of Y wires-> 291 mm

Laser

- 1. The electrons are planned to produce by photocathode driven by pulsed laser as in 20-L system
- 2. We can get a spare excimer laser from Instrumentation Division
- 3. The photocathode will also be supplied by Instrumentation with evacuation
- 4. Laser spot should have mobility

Front-End Electronics

- 1. We are going to duplicate the FEE of MicroBooNE with all wires implemented
- 2. Spare parts are available from Fermilab
- 3. The goal of the FEE is to establish similar functionality as MicroBooNE with low noise

4. Jyoti will show the details in her talk

DAQ System

- 1. We are going to use commercial ADC for the DAQ
- 2. For cost/efficiency consideration, we are going to readout 96 channels
- 3. The goal of the DAQ system is to acquire data on laser trigger
- 4. Wei will cover the details in his talk

Floor Plan

- 1. We need to re-arrange our working area to accommodate the LArFCS system
- 2. The High-bay area has enough space to handle the system, ODH is not an issue
- 3. We are also in contact with Magnet Division for the possibility to set up our experiment in their area considering their capability of the cryogenics system

Safety Reviews

- It is crucial to ensure the fulfillment of the safety requirements by BNL
- We have discussed with Ron and determined the LArFCS system will be added to the current 20-L test stand ESR with revisions
- The laser would need a new SOP

Conclusion

- We have a clear plan for the construction of the LArFCS to conduct the direct measurement of field response function of LArTPC
- We have enough manpower to execute the plan
- There are additional requirement for safety review including both updates our current ESR and laser safety review
- The details of each subsystem will be covered in the next talks